skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oliva, Aude"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing reach of deepfakes raises practical questions about people’s ability to detect false videos online. How vulnerable are people to deepfake videos? What technologies can help improve detection? Previous experiments that measure human deepfake detection historically omit a number of conditions that can exist in typical browsing conditions. Here, we operationalized four such conditions (low prevalence, brief presentation, low video quality, and divided attention), and found in a series of online experiments that all conditions lowered detection relative to baseline, suggesting that the current literature underestimates people’s susceptibility to deepfakes. Next, we examined how AI assistance could be integrated into the human decision process. We found that a model that exposes deepfakes by amplifying artifacts increases detection rates, and also leads to higher rates of incorporating AI feedback and higher final confidence than text-based prompts. Overall, this suggests that visual indicators that cause distortions on fake videos may be effective at mitigating the impact of falsified video. 
    more » « less
  2. null (Ed.)
    Widely used in news, business, and educational media, infographics are handcrafted to effectively communicate messages about complex and often abstract topics including `ways to conserve the environment' and `coronavirus prevention'. The computational understanding of infographics required for future applications like automatic captioning, summarization, search, and question-answering, will depend on being able to parse the visual and textual elements contained within. However, being composed of stylistically and semantically diverse visual and textual elements, infographics pose challenges for current A.I. systems. While automatic text extraction works reasonably well on infographics, standard object detection algorithms fail to identify the stand-alone visual elements in infographics that we refer to as `icons'. In this paper, we propose a novel approach to train an object detector using synthetically-generated data, and show that it succeeds at generalizing to detecting icons within in-the-wild infographics. We further pair our icon detection approach with an icon classifier and a state-of-the-art text detector to demonstrate three demo applications: topic prediction, multi-modal summarization, and multi-modal search. Parsing the visual and textual elements within infographics provides us with the first steps towards automatic infographic understanding. 
    more » « less